JSGLib Tutorial 3: Ghosts

In this tutorial we create a little game to demonstrate multi-threaded use and further key
input handling. A knight is trying to collect gold bars while avoiding ghosts.

Program.java

First, we create Program.java in ghosts:

package ghosts;
import jsglib.*;

public class Program {
public static void main(String[] args) {
Stage stage = new Stage ("Ghosts",800,600,"forest.jpg");
}
}

Knight.java
Next, we create the Knight class and derive it from StageObject:

package ghosts;
import jsglib.*;

public class Knight extends StageObject ({

public Knight (Stage s, int x, int y) {
super (s, "Knight", x, vy, "knight.png", 30) ;
}

public void act () {

if (stage.isKeyPressed ("DOWN"))
changeY (4) ;

if (stage.isKeyPressed ("UP"))
changeY (-4) ;

if (stage.isKeyPressed ("RIGHT"))
changeX (4) ;

if (stage.isKeyPressed ("LEFT"))
changeX (-4) ;

}
Note that this object gets an id Knight (2nd argument for super) because we need to query
it later on in other threads.

We override method act to check the arrow keys and move the object around. changeX
and changeY add the given value to the current one. There is no range check needed. The
object can move out of side but not further. act will be called every 20 ms by default.

Create a knight in main:

© 2019 MS



JSGLib Tutorial 3: Ghosts

public static void main (String[] args) {
Stage stage = new Stage ("Ghosts",800,600,"forest.jpg");
new Knight(stage, 200, 200);
}
It's not working yet because we need to ,start” the stage to get a thread for each stage
object:
public static void main (String[] args) {
Stage stage = new Stage ("Ghosts",800,600,"forest.jpg");
new Knight (stage, 200, 200);
stage.start();
}

It doesn't matter if the object is added before or after start is called. Each thread executes
StageObject.run which loops until Stage.stop is called somewhere and calls
StageObject.act every StageObject.actDelay milliseconds (default 20 ms). Usually you
override the act method but you can also override run itself if you so desire.

Ghost.java

package ghosts;
import jsglib.*;

public class Ghost extends StageObject {

public Ghost(Stage s, int x, int y) {
super (s, x,y,"ghost.png", 30) ;
setRotationStyle (StageObject.NONE) ;
setRotation (Tools.rand (0, 360));

}

public void act () {
move (4) ;
if (hasHitBoundary())
bounceOffBoundary () ;

}
Ghost is also derived from StageObject. setRotation sets an angle directly.
setRotationStyle(NONE) will prevent the image from being rotated.

act is overridden to move forward. hasHitBoundary returns true if object is out of side and
bounceOffBoundary will adjust the angle to ,bounce off* the boundary.

Then we create 15 ghosts in the same spot in main:

public static void main(String[] args) {
Stage stage = new Stage ("Ghosts",800,600,"forest.jpg");
new Knight (stage, 200, 200);

© 2019 MS



JSGLib Tutorial 3: Ghosts

for (int i = 0; 1 < 15; i++)
new Ghost (stage, 600,400) ;
stage.start () ;
}
When a ghost and the knight collide the game is supposed to be over so complete
Ghost.act with the instructions written in bold:
public void act() {
move (4) ;
if (hasHitBoundary())
bounceOffBoundary () ;
if (touches(stage.getObject("Knight"))) {
new StageObject(stage,400,300, "gameover.png") ;
stage.stop() ;

}
getObject returns an object. You need to set an id for this object either when it's created or
later on with setld(String id). Stage.stop will cause all threads to terminate.

Goldbar.java

Now we add a gold bar that has to be collected by the knight:

package ghosts;
import jsglib.*;

public class Goldbar extends StageObject {

public Goldbar (Stage s, int x, int y) {
super (s, x,y, "goldbar.png", 20) ;
}

public void act () {
if (touches(stage.getObject ("Knight"))) {
moveTo (Tools.rand (50, 750), Tools.rand (50,550)) ;
}

}

We override act to reposition the gold bar when it's touched by the knight. Alternatively,
you could give this object an id Goldbar and check in class Knight if both collide.

In main we create it at the same position as the ghosts:

new Knight (stage, 200, 200);

new Goldbar (stage, 600, 400);

for (int 1 = 0; i < 15; i++)
new Ghost (stage, 600,400) ;

© 2019 MS



JSGLib Tutorial 3: Ghosts

Time to Score

Finally, we count how many gold bars were collected before the game ends. Therefore we
add a mixed variable to stage in main:

for (int 1 = 0; i < 15; 1i++4)
new Ghost (stage, 600,400) ;

stage.addVariable ("Score",0) ;

stage.start () ;

And increase the counter in Goldbar.java when knight and gold bar touch:

public void act () {
if (touches(stage.getObject ("Knight"))) {
moveTo (Tools.rand (50, 750), Tools.rand (50,550)) ;
stage.changeVariable ("Score",1) ;

}

A mixed variable can hold a String, int or double. changeVariable changes the current
value by adding the given value. setVariable sets a value directly. A value can be queried
by getVariableAsint, getVariableAsDouble or getVariableAsString.

© 2019 MS



	Program.java
	Knight.java
	Ghost.java
	Goldbar.java
	Time to Score

