
JSGLib Tutorial 2: Dice

Goal of this tutorial is to roll some dice and demonstrate how to change the appearance of
stage objects and handle key input. It could easily be turned into a game but as the focus
is on how to use the jsglib we don't go that far.

Dice.java
Therefore, we first create Dice.java in package dice:

package dice;
import jsglib.*;

public class Dice {
StageObject obj;
int spots;
public Dice(Stage s, int x, int y) {

obj = new StageObject(s,x,y,"dice1.png",40);
obj.hide();
spots = 1;
obj.addImage("dice2.png");
obj.addImage("dice3.png");
obj.addImage("dice4.png");
obj.addImage("dice5.png");
obj.addImage("dice6.png");

}
}

hide hides the object from the stage, can be shown again by show.

addImage adds another image to the object. We specify no id for the images (we could
use addImage(String id, String fname) for this). If no id is given the file name is the id. If
the stage object gets an id itself via the constructor the first image uses this id. Either you
can later on set an image by using the id or the index in the images list starting with index
0. We use the later as it is more convenient for our example.

Program.java
In Program.java we create 5 dice:

package dice;
import jsglib.*;

public class Program {
public static void main(String[] args) {

Stage stage = new Stage("Dice",800,600,"rock.jpg");
Dice dice[] = new Dice[5];

for (int i = 0; i < 5; i++)
dice[i] = new Dice(stage,100 + i*150,300);

}

© 2019 MS

JSGLib Tutorial 2: Dice

}

Roll the Dice
We don't see anything yet as we hid the dice. Now add the roll method to class Dice:

public void roll() {
obj.show();
for (int i = 0; i < 360; i += 20) {

spots = Tools.rand(1,6);
obj.setImage(spots-1);
obj.rotate(20);
Tools.wait(20);

}
}

We first show the dice again and „roll“ it with a small animation and remember the current
spots. Note, that rotate goes clockwise with positive values. You could also use
rotateRight(deg) or rotateLeft(deg) to avoid confusion. setImage(int) sets the image by
index. As we added the images in increasing order dice1.png is at index 0, dice2.png at
index 1, … so we can easily use spots – 1 as index. If, e.g., you had added dice2.png as
addImage("d2", "dice2.png"); you could have set the image by setImage("d2");.

Now roll the dice in main after waiting for a key to start:

Tools.println("Press any key to roll dice.");
stage.waitForKey();

for (int i = 0; i < 5; i++)
dice[i].roll();

waitForKey waits for any key to be pressed and then released. It also returns the pressed
key as String (if any letter from A to Z, digit from 0 to 9 or SPACE, ENTER, UP, DOWN,
LEFT, RIGHT).

Note, that the dice will be rolled one after the other. As we use a single thread and wait in
class Dice, the dice can't be rolled simultaneously. Either you'd use a non-waiting update
method with a single wait in the main loop or multiple threads (the latter being the better
solution and subject in the next tutorial).

Hold Dice
Next, add boolean hold and method hold to Dice.java to „freeze“ a dice so that roll does
not re-roll it if on hold (just add the instructions written in bold):

public class Dice {
...
boolean hold;

public Dice(Stage s, int x, int y) {

© 2019 MS

JSGLib Tutorial 2: Dice

...
hold = false;

}

public void roll() {
if (hold)

return;
...

}

public void toggle() {
hold = !hold;
if (hold)

obj.moveTo(obj.getX(), obj.getY()+100);
else

obj.moveTo(obj.getX(), obj.getY()-100);
}

}

To visualize its state a dice on hold is moved down a little. moveTo either takes a position
x,y or another object. getX and getY get an object's center position.

Now add the following written in bold to main:

...
for (int i = 0; i < 5; i++)

dice[i].roll();

while (true) {
if (stage.isKeyReleased("A"))

dice[0].toggle();
if (stage.isKeyReleased("S"))

dice[1].toggle();
if (stage.isKeyReleased("D"))

dice[2].toggle();
if (stage.isKeyReleased("F"))

dice[3].toggle();
if (stage.isKeyReleased("G"))

dice[4].toggle();
if (stage.isKeyReleased("SPACE"))

for (int i = 0; i < 5; i++)
dice[i].roll();

Tools.wait(20);
}

isKeyReleased returns true if key was pressed and then released. You must not use
isKeyPressed here as it returns true as long as the key is pressed resulting in the dice to
jump around. That a key was released is remembered for 10 program cycles (200 ms by
default) so your delay shouldn't be too high otherwise the release event is lost (again just

© 2019 MS

JSGLib Tutorial 2: Dice

stick to 20 ms, it's really a reasonable value).

As we work around real event handling here to make it easier for students it is a bit
unclean: As mentioned the delay must not be too high and if used in multiple threads each
key must only be checked in one thread otherwise events get lost again. On the other
hand it doesn't make too much sense to check the same key for different objects. So both
limitations are ok in my opinion.

© 2019 MS

	Dice.java
	Program.java
	Roll the Dice
	Hold Dice

