JSGLib Tutorial 1: Ladybug

As a very first example we let a ladybug eat cloverleaves.

Setting up the Program Class

The package (directory) is supposed to be named /adybug. It contains a class Program
with the main method. Note, that while Eclipse adds the package line automatically, you
have to add it yourself in Java-Editor (case matters, so best always name packages lower-
case). With the import command we include everything from the jsglib package.

package ladybug;
import jsglib.*;

public class Program {
public static void main(String[] args) {
}

}

The following instructions are added to main.

Creating the Stage
The Stage class provides a window, input handling and simple counters.
Create the stage with

Stage s = new Stage ("Ladybug", 800,600, "sand.jpg");

The first parameter is the window caption, followed by window size and background
image. You can change the background later with Stage.loadBackground(String s). See
images directory for all the images available (backgrounds are jpgs) . You can add own
images, of course.

Creating the Ladybug

The StageObject class provides objects that can be moved, rotated, scaled, change their
appearance, ...

Create the ladybug with
StageObject b = new StageObject(s,400,300,"ladybug.png",20);

There are different constructors for StageObject (see doc), this is the most common one.
First, you specify the stage and position, then the image and optionally a scaling factor
(100 is 100%). So we scale the image down to 20% of the original size.

Make the Ladybug follow the Pointer
Add the following while-loop:

while (true) {

© 2019 MS



JSGLib Tutorial 1: Ladybug

b.lookAtPointer () ;

b.move (6) ;

Tools.wait (20);

}

lookAtPointer instantly rotates the object so that it looks towards the mouse pointer. move
moves an object forward in the current looking direction. The given steps are in pixels.
Angles work as in math: at 0° an object looks eastwards. A positive angle means
counterclockwise rotation.

The Tools class provides static helper methods, e.g., wait puts the thread to sleep for 20
ms. Note, that Stage's repaint timer task is scheduled at 20 ms, so in terms of frame rate it
does not make sense to go below this value unless you also reduce Stage.repaintDelay.
Generally 20 ms is a good delay so you should work this this.

Feed the Bug

Now, add the instructions written in bold:
StageObject 1 = new StageObject(s,600,300,"cloverleaf.png",20);

while (true) {
b.lookAtPointer () ;
b.move (6) ;
if (b.touches(l)) {
1l .moveTo (Tools.rand (50,750) ,Tools.rand (50,550)) ;
b.scaleUp(2) ;

}
Tools.wait (20);

}

We create another object showing a cloverleaf. When bug and leaf touch each other (you
can also use method checkCollision which does the same whatever name suites you
better) the cloverleaf is moved to a random position (Tools.rand(int min, int max) returns a
random integer number between and including min and max). scaleUp increases the
object size by a percentage of the original image size.

Note, that the collision check right now is very basic and assumes circular objects. It works
fine when width and height are almost the same but with stretched out objects you will get
false hits.

© 2019 MS



	Setting up the Program Class
	Creating the Stage
	Creating the Ladybug
	Make the Ladybug follow the Pointer
	Feed the Bug

